Road Density?

The Global Roads Inventory Project (GRIP) dataset describes 60 geospatial datasets on road infrastructure across the world covering 222 countries and over 21 million km of roads. The dataset is split into 5 road types: highways/ primary/ secondary/ tertiary/ local roads. It is used by organizations such as GloBio to monitor human impacts on biodiversity. The GRIP dataset consists of global and regional vector datasets in ESRI file geodatabase and shapefile format, and global raster datasets of road density at a 5 arcminutes resolution (~8x8km).

RLC
Home Page

Data gathering such as this may appear to be a process like that of an embalmer, given the rate of change in biodiversity and the increase of global warming gases, largely facilitated by the expansion of roads and what the lead to for our use. Could it be that simple? Would it be possible to just end road construction?

The Global Roads Inventory Project (GRIP) dataset was developed to provide a more recent and consistent global roads dataset for use in global environmental and biodiversity assessment models such as GLOBIO. The GRIP dataset consists of global and regional vector datasets in ESRI file geodatabase and shapefile format, and global raster datasets of road density at a 5 arcminutes resolution (~8x8km).

The United Kingdom has a national land use policy like most of the EU. The UK is a dense island nation represented by a core of residential, institutional and commercial urban centers in Scotland, England, Wales, and Northern Ireland and while the relationship with the Republic of Ireland is improving it is deteriorating with the EU.

The urgency of sustainable energy or a zero waste world is well defined philosophically but the question of successful implementation is unanswered.  The UK, on the other hand, might be the first place of significant size where implementation will offer some hope.

In the United States and the EU, economic policy distributes energy resources to accomplish affordability while anticipating a period of increased scarcity extending through the twenty-first century. 

The increase in “green deals” and the promotion of tech-innovations focus on all levels of new urban development.  Alternative bio-energy/hybrid systems, the design of materials based on re-use as the sustainable alternative addresses 10% to 20% of the problem. This is roughly equivalent to the rate of new products entering the market.  The remaining 80% to 90% is represented by the world that is already built.

The issue is neatly symbolized in the United States by the high-speed train.  Thousands of rail mass transit miles in older urban centers offer a century of trial and error development of enormous value to successful urbanization.  For example, the New York City transit service area is just 321 square miles serving its 8 plus million residents who over the course of one year will travel nearly 12 billion miles.  (See the National Transit Database for your region).

Older mass transit systems are examples of how government absorbs private economic development in the public interest.  Based on where and when the goal posts are set, “penny saved” and “payback” investment in the existing dense core should encourage the holders of real estate to invest mightily to save millions, but the capital continues to move to greenfield opportunity (AKA – nice flat farmland) and in the American dry-lands (mid- to southwest areas) where substantial new development has occurred.

As of the beginning of the 21st century, nothing compels investors to “future-proof” past the wonders of a solid ROI.   To do so will require new forms of public investment aimed at moving the dime of the zero-sum question.  This can be done by limiting development outside of the present urban core with a variety of disincentives.

Similar limitations are outlined in the vital areas of the social economy.   The social security systems of European and American origin drew a safety line around everyone.   These health, education, welfare and defense investments borrowed extensively on continuously advancing “productivity” technologies.  It is reasonable to protect the high cost of long life and civil society or is more responsible to fund a permanent state of global warfare in a variety of combat settings?

The only threat to analysts becomes, increased social and economic dysfunctions contained within “regions.” The bet on technology, a reasoned quality of life contract, and a way to end the confrontational conditions caused by the poor allocation of energy resources require a serious look at the lines of demarcation.

DATASETS & INDICATORS

The following list of “road datasets” suggests how important this largely public function is assessed by investors. Conduct a simple search test of the dataset titles [in brackets] below to confirm this impression. Report back via comments.

Road density (km of road per 100 sq. km of land area) [IS.ROD.DNST.K2]
Roads, goods transported (million ton-km) [IS.ROD.GOOD.MT.K6]
Roads, paved (% of total roads) [IS.ROD.PAVE.ZS]
Roads, passengers carried (million passenger-km) [IS.ROD.PSGR.K6]
Road sector diesel fuel consumption (kt of oil equivalent) [IS.ROD.DESL.KT]
Road sector diesel fuel consumption per capita (kg of oil equivalent) [IS.ROD.DESL.PC]
Road sector energy consumption (kt of oil equivalent) [IS.ROD.ENGY.KT]
Road sector energy consumption per capita (kg of oil equivalent) [IS.ROD.ENGY.PC]
Road sector energy consumption (% of total energy consumption) [IS.ROD.ENGY.ZS]
Road sector gasoline fuel consumption (kt of oil equivalent) [IS.ROD.SGAS.KT]
Road sector gasoline fuel consumption per capita (kg of oil equivalent) [IS.ROD.SGAS.PC]
Motor vehicles (per 1,000 people) [IS.VEH.NVEH.P3]
Passenger cars (per 1,000 people) [IS.VEH.PCAR.P3]
Vehicles (per km of road) [IS.VEH.ROAD.K1]

 

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.